Te	errar	rane Analysis Matrix							
1	2	3		4	5		6		
		Lithc	ology	Structure	Anisotropy	Heterogeneity	Hydrology		
Potential Receptors (such as groundwater supply wells, surface water bodies)	Regional Physical Setting (Link to map of physiographic provinces)			Horizontal Beds	Isotropic in horizontal plane. Impedes (does not prohibit) vertical migration of NAPL.	Potential heterogeneity associated with complex depositional history and environments, local-scale folding, and differential weathering. Homogeneous for uniform depositional history/environment	Isotropic flow to dendritic drainage network.		
				Example 2 of the second	Preferential fluid migration along strike (into /out of page) in saturated fractures under static equilibrium. Down-dip migration of DNAPLs.		Anisotropic flow to trellis drainage network		
				Vertical Beds	Fluctuation of LNAPL up and down dip with changes in groundwater elevation. Down-dip pumping induced flow.				
		Noncrystalline	Sedimentary ¹	Folding/Faulting	Down-dip emplacement of contaminants through "vadose" zone via surface release. Down-dip infiltration and recharge.	Potential heterogeneity associated with complex structural deformation, fracturing, and depositional history and environment.			
		Crystalline	Metamorphic	Inclined Foliation	Groundwater flow will align with foliation fabric orientation on a regional scale and this orientation is likely to be reproduced in other transmissive features such as faults or shear zones.	Potential for heterogeneity due to intermingling of parent rock types (such as gneiss enveloped in schist). Strike of foliation more variable at local scales.			

1	2	3	4	5	5		
Potential Receptors (such as groundwater supply wells, surface water bodies)	Regional Physical Setting (Link to map of physiographic provinces)	Litholo	gy Structure	Anisotropy	Heterogeneity	Hydrology	
			Weak/Not Folia		Homogeneous crystalline matrix.	Discrete fracture flow potentially aligned with regional metamorphic foliation.	
			Intrusive Pluton	ic variable or radial patterns.	Heterogeneous fractures.	Discrete fracture flow to radial drainage pattern.	
	Regional Physical Setting	Crystalline	Shoeoo	Horizontally stratified (flows, vesicles, weathering horizon) Quasi-isotropic in horizontal plane.	d Heterogeneous due to variability of vesicles, cooling history, and undulations in flows.	Quasi-isotropic flow to local drainage features. Groundwater flow tends to follow direction of lava flows as influenced by paleotopography.	